이번엔 베르누이 분포와 이항 분포에 대해 알아볼까 합니다! 📌 이항 분포(binomial distribution) 위키백과에 따르면 이항 분포는 연속된 n번의 독립적 시행에서 각 시행이 확률 p를 가질 때의 이산 확률 분포이다. 라고 합니다. 주사위 던지기로 예를 들어봅시다. 우리가 주사위를 10번 던져서 6이 나오는 횟수를 구한다고 할때, n은 10이 될겁니다(n=10). 10번의 독립적 시행이니까요! 그런다음 확률 P는 1/6이 되겠네요.($p=\frac16$) 주사위의 6면중에서 6이 나올확률이니까요! ➕ 이항 분포의 확률 질량 함수 이항 분포의 확률 질량 함수는 $$ Pr(X=x) = f(x;n,p) = {n \choose x}p^x(1-p)^{n-x} \\ X \sim B(n,p) $$ $$ {..